Getting Started

Adafruit Playground is a wonderful and safe place to share your interests with Adafruit's vibrant community of makers and doers. Have a cool project you are working on? Have a bit of code that you think others will find useful? Want to show off your electronics workbench? You have come to the right place.
The goal of Adafruit Playground is to make it as simple as possible to share your work. On the Adafruit Playground users can create Notes. A note is a single-page space where you can document your topic using Adafruit's easy-to-use editor. Notes are like Guides on the Adafruit Learning System but guides are high-fidelity content curated and maintained by Adafuit. Notes are whatever you want them to be. Have fun and be kind.
Click here to learn more about Adafruit Playground and how to get started.
-
Reading Pixels from the RA8875 Driver Board Intro to the RA8875 Driver Board for Circuit Python
The Adafruit RA8875 driver in Circuit Python does not currently support displayio. You must use read/write registers with a barebones ra8875 graphics library. The current feature set and how it is used is only for very advanced users.
You can draw a bmp image and overlay text but you'll quickly find that's about all you can do with it. There are only 2 examples provided and the driver board is unlike any other display device for Circuit Python. Any knowledge you have of displayio does not transfer over to this board; the RA8875 is unique.
The interest of using an 800x480 bare display with Circuit Python is typically due to the sheer size of it but it should come with fair warning: You must be capable of programming with circuit python from scratch without displayio.
The bits and bytes of binary color
Since the RA8875 can only display a maximum of 16-bit color; the 24-bit image must be converted to 16-bit (color565).
The RA8875 stores color information in its memory with 2 bytes (2 pairs of 8 bits). Here is a binary representation of how it stores the color. 11111111 00000000 There are 8 bits in 1 byte.
However the RA8875 actually stores them in what is known as swapped color565. Each first byte must be swapped with the 2nd. This is not some type of color conversion error. These are the direct reads from the memory addresses for the stored colors.
-
Using GPIO on Arduino. Hi. today i`m going to show you how to use the GPIO or pins on Arduino it doesn't matter witch one as long as it has GPIO.
First jumper weirs:
-
About I've been doing the hobbies of coding and circuit boards for three years now, I use Adafruit a lot and would love to help other people with the same hobbies on here with fun projects and useful info. I will be doing small and large guide projects. I will make sure to add all of the crucial info and extra detail to make it easier. thanks.
needed components during my tutorials:
led`s and resistors, transistors, capacitors
3d printed software or cnc soft-where.
basic circuit boards and device to code them with Arduino ide or mu editor.
That`s all! thank you for your time.
-
The Necrochasm: Pushing the Prop-Maker RP2040 to its limit! This is a project that was years in the making, I went through many iterations that failed one way or the other. However, the final project was only started about a few months ago. It's great to see this project realized at last! The trigger really works, it has the appropriate sound effects, it has two firing speeds, and a "virtual ammo" system that you replenish by physically removing and reinserting the cartridge. So, where did it all begin?
The initial step of the process was to design the 3D printable case, which I did in blender. I found someone who extracted a model of the Necrochasm from the game itself and went to work sculpting out the finer details, hollowing out the interior, and adding LED areas. I also took this time to log into Destiny, and use my in-game Necrochasm to record the proper sound effects.
I exported the resulting pieces from blender to fusion 360 where I added the hardware mounting features. My vision for this prop was to have one area where most of the electronics were stored. This trapezoidal area at the bottom-front of the prop looked like it had the most storage capacity.
-
CG-35: A Retro RPN Calculator The CG-35 is a CircuitPython emulation of the Hewlett Packard HP-35 Scientific Reverse-Polish Notation (RPN) calculator designed for the Adafruit ESP32-S3 Feather and 3.5-inch TFT FeatherWing capacitive touch display. The calculator consists of a 10-digit LED-like display backed-up with 20-digit internal calculation precision.
This emulation reproduces the HP-35 calculator's v2.0 firmware where the change sign (CHS) key is active only after digit entry has begun. And because of the
udecimal
andutrig
classes, calculation accuracy of monadic, dyadic, and trigonometric functions was improved. As an added bonus not present on the original calculator, a status message will appear just below the primary display when a calculation error is encountered.The calculator's graphical layout was designed to mimic the aspect ratio of the original calculator -- that's why the left and right sides of the display screen were left empty. However, to provide a more reliable touch screen experience, the keys are somewhat proportionally larger than the original.
This project was inspired by Jeff Epler's DIY Desktop Calculator with CircuitPython project and Jeff's work to create CircuitPython versions of
udecimal
andutrig
. Thank you Jeff!GitHub Repository: https://github.com/CedarGroveStudios/CG-35_Calculator
Primary Code Module
The primary code module
cg_35_calculator.py
, imported bycode.py
, instantiates the display, plots the calculator case and buttons, and implements all calculator operational processes. This module uses a state machine design with the following named states:- IDLE -- Display results or wait for input
-
C_ENTRY -- Coefficient entry (keys:
0
-9
,.
,CHS
,EEX
) -
E_ENTRY -- Exponent entry (keys:
0
-9
,.
,CHS
) -
STACK -- Stack management (keys:
ENTER
,CLR
,CLX
,STO
,RCL
,R
,x<>y
,π
) -
MONADIC -- Monadic calculator functions (keys:
LOG
,LN,
e^x
,√x
,ARC
,SIN
,COS
,TAN
,1/x
) -
DYADIC -- Dyadic calculator functions (keys:
x^y
,-
,+
,*
,÷
) - ERROR -- Calculation error
The calculator's display precision and internal calculation precision are specified using the variables
DISPLAY_PRECISION
andINTERNAL_PRECISION
. Although the internal precision exceeds that of the original HP-35 calculator, it is recommended to keep the existing default settings of 10 digits and 20 digits, respectively, to avoid rounding errors.The variable
DEBUG
can be use to provide additional internal register status via the REPL. This boolean variable defaults toFalse
(no additional register status). -
Using Multiple WiFi Access Points with CircuitPython Introduction:
If you have the need your WiFi project to operate at various locations with different WiFi SSID/PASSWORD settings at each location, read on. If you are using an MCU with built-in WiFi that CircuitPython 9.0.0 or later supports, there may be a solution to your issue.
Overview of the project:
This article will provide you with two tools to get you started.
- A code.py defined function (def) that will cycle through the WiFi networks defined in settings.toml. It will also show a sorted list of available WiFi access points found locally.
- A sample settings.toml to get you started.
- There are additional functions and features that will be covered as we go along.
- There will be a description of how each function works and interacts.
Why would you need multiple WiFi SSIDs in IoT projects?:
Let’s say you have a project that you must develop at home, show friends how it works at your bridge club, test it under various situations, and demonstrate its features to a customer. Having all the SSIDs and PASSWORDs predefined and having your project cycle through them without your intervention, except the first time you add them, would speed things up.
Prerequisites:
The system requirements are simple. An MCU with built-in WiFi that is supported by Circuit Python 9.0.0 or newer. My tests were run on a Raspberry Pi Pico W. All the libraries are built into CP 9.x.x that the sample code.py needs. They are: import os, wifi, random, binascii. The additional libraries used by the diagnostic code are import time, board, digitalio, ipaddress, supervisor, microcontroller and are also built-in.
If your MCU is listed at the web site below, your board is probably supported.
https://docs.circuitpython.org/en/latest/shared-bindings/wifi/index.html
Click on Available on these boards for a full listing. Considering the length of the boards listed, I have not tested, nor can I guarantee this code will work with any or all of them.
Upload the code and configuration:
To test if this program will work on your MCU (listed above), load CircuitPython 9.0.0 or newer, copy the code.py and settings.toml files to your board. Then startup REPL and see what is happening. It should cycle through the 10 SSID/PASSWORD pairs preloaded into settings.toml and fail at each one and move on to the next.
If you get wifi not found/defined, this program will not work because CP 9.x.x does not support your board. The AdaFruit Forum experts will have to address this.
Replace one of the test sites listed in settings.toml with your local WiFi SSID and PASSWORD then watch what happens. The program should pick a random site and cycle through to your site and connect. It will wait 10 seconds then reboot and pick a random site and cycle again. Then change the IP address in line 116 and verify that your MCU can ping a known good local site.
This should work out-of-the-box. If yours doesn’t, contact me on the AdaFruit Forum, @blakebr.
Conclusion:
I hope this utility helps you in making your programs more bulletproof while connecting to WiFi. I am looking forward to your real-life testing and improving this utility with your input.
I suggest you place the code snippet below someplace in your program to periodically test that the WiFi connection is still good.
-
Touchscreen TFT & SDCard with the Raspberry Pi Pico W The goal for this project is to get the display, touch screen, and sd card working on the Pi Pico by calibrating the touchscreen and printing the contents of the sdcard to serial console.
Learning how to share multiple SPI peripherals reduces the amount of pins you need which can increase the amount of available pins for other uses. A SPI bus is very similar to an I2C bus except the SPI peripheral has a unique chip select pin assigned to it. I find it easier to think of the chip select pin as a SPI address pin. You can only have 1 address per device with I2C and the same holds true with SPI devices except the address is a physical pin.
Because SPI peripherals require a physical pin you will be limited to how many you can have based on how many free pins your microcontroller has. What SPI lacks in chain ability it makes up for with speed.
- I2C devices are half-duplex
- SPI devices are full duplex
Because SPI communication is twice as fast as I2C it makes far more sense to use SPI for displays and sd cards! Don't get me wrong, I2C definitely has its place for uses such as:
- temp sensors
- optical sensors
- 7-Segment displays
- 14-Segment displays
- small 16x9 matrix LED modules
- Neopixel strips
- and chaining a ton of devices on 1 bus without the limitation of physical pins per device.
When it comes to needing faster communication for a display that has 480x320 (153,600 total) pixels or sd card reading & writing for a single device that's where the SPI protocol outperforms I2C.
I recently worked on a project with a Raspberry Pi Pico that needed to have a Touchscreen TFT & SD Card. That's actually 3 peripherals because the touchscreen controller chip requires pins too. In the majority of scenarios when you have a SPI touchscreen you actually have 2 SPI devices, the display and the touchscreen.
In the Raspberry Pi Pico pinout diagram there are 2 separate SPI buses. SPI0 and SPI1. SPI0 peripherals cannot communicate with peripherals on the SPI1 bus and vice versa. A peripheral would be anything on the SPI protocol such as a display, sdcard, temp sensor, etc... They are highlighted below with magenta labels. Please notice that each SPI bus is prepended with SPI0 or SPI1.
Here is the wiring setup using an Adafruit Proto Picow Doubler. The doubler offers a maximum of 3 input headers per physical pin. That means you can share up to 3 SPI devices per pin with their doubler. This is a very handy feature as I didn't have to use a breadboard to prototype this project, very cool. The reset button also came in handy during prototyping. If you have a Pi Pico I highly recommend getting one of these. They're like Feather doublers but for the Pico.
-
IKEA Förnufig Air Purifier V2 - Custom fan speed controller + Blinkenlights Basic premise:
Add lights (speed / noise / air-purity indicators, or needless dotstar+neopixel love), use small board to receive tachometer input and drive 24V fan PWM signal from particle sensor, along with new inputs for noise level. Plus show off Blockly based programming on Adafruit IO, and update as and when the new maths functions become available, but for now write a quick CircuitPython version that illustrates all the desired functionality (to port to Adafruit IO).Semi-finished code: - Functionally capable but no reactive light use, rainbow:
[Reproduced from https://github.com/tyeth/Ikea_ItsyBitsyEsp32_Air_Purifier/ ] -
Wippersnapper - Sensirion SEN55 Particulate/VOC/NOx sensor - Plus an educational saga in the quest for a case... Wippersnapper
For those not in the know, WipperSnapper is Adafruit's plug-and-play firmware, which runs on their IO (think IOT) platform, offering free* data history(feeds) with graphs, dashboards, and automatic actions/triggers (along with integrating with other platforms like IFTTT). There is a paid upgrade for longer history, unlimited devices, SMS alerts, etc.
I love it because it's super quick and easy to test a sensor works, and to just get some data recording quickly.
Goto a web-page, flash over usb, add sensors via control panel (feeds + graphs are automatic), done.
Under the hood it's an arduino sketch, so adding additional sensors via github pull requests is surprisingly easy (I've added a few because it makes my future tasks easier).
For this project I'm testing the Sensirion SEN55, which senses Nitrous Oxides (NOx), Volatile Organic Compounds (VOCs), with temperature and relative humidty as a reference (uses SGP40/41 inside), and measures particle counts at <1.0 micron, <2.5, <4.0, and <10.0 micron. The other models of this sensor have less features (SEN54: no NOx, SEN50: no NOx/VOC/Relative Humidity+Temp - only Particulate Counts).
From the standard drivers(arduino/Pi) created by Sensirion we can retrieve the typical particle size, along with the raw particle counts (or in SI units ug/m3), the temperature and humidity, and then two indexes for NOx and VOC.
The NOx index has a baseline of 1.0, and if you hide the sensor under an upside down saucepan and use a lighter under the saucepan before sealing it back up then you will see a rise in the NOx index and then a return to baseline (1).
The VOC index is instead based at 100. You can detect VOC events from many things, the human breath can even be a source. I tested mine with a jar of clear nail varnish, but anything which you can smell, or smells chemically, is probably going to affect the sensor.Connectivity-wise, it uses I2C, or other methods (UART?) which are as yet unpublished. The connector requires a JST-GHR 1.25mm 6 Pin compatible cable. The development kits include such a cable, but are heavily marked up cost-wise, like an additional 150% (£50 for kit, £20 for bare sensor). I advise getting a bare version with an additional cable from elsewhere (coolcomponents have a cable under £2). There is also a Grove connector version from seeedstudio.
-
Hiking Masterpiece Overview
Welcome to the Adafruit guide on creating a stunning Badger Mountain themed art piece! In this guide, we'll show you how to bring your artistic vision to life using the powerful Feather RP2040 microcontroller, along with an array of components including audio jacks, buttons, and LED strips.
Circuit Diagram
-
Github Desktop CRLF to LF PowerShell Workaround The Windows Github Desktop program is an easy to use Git GUI for Windows users and it works great in most situations. However, it has a notorious history of converting every file in a Git repository checkout/clone to all CRLF (Windows Style) line endings. Line endings are also known as EOL's (End of Line).
To make line endings visible in Notepad++ go to
View > Show Symbols > Show End of Line
Here's an example of what CRLF's look like when made visible.
All Github Desktop had to do is add a preference option to checkout and commit with LF only. No such option exists. This behavior is not present in any other Git based tool so this is a problem unique for Windows Github Desktop users. There are workarounds published online that include changing an environment variable and global git config. That workaround only works for 1 session, as soon as you close Github Desktop it will promptly ignore your previous changes. There are hundreds of issues filed about this in the Github Desktop repo over the past decade with no real solution.
There has to be a way to fix this!
-
Running Pi-HATs with a Raspberry Pi Pico Running Pi-HATs with a Raspberry Pi Pico
Being a Pi-user since the very first Pi1, I own many different Pi-HATs. Some of them are in daily use, but many of them are sitting in the shelf. So I wondered if I could give them a second chance in combination with a Pico. And one of my major use-cases are e-ink displays for the Pi. These e-inks don't really match with the Pi, since they are optimized for low-power scenarios. But even the Pi-Zero drains batteries too fast to be a suitable partner for these kind of displays.
Although equipped with a full 2x20 pin socket, most HATs only use a few pins like power, ground, I2C or SPI. So using a bunch of jumper cables should already be sufficient. Although that is true and fine for initial tests, a good and solid connection is always the better alternative.
So I did some research and discovered a few adapter-boards on the market that might be suitable. But on closer inspection it turned out that most of them missed one important point: just mapping some arbitrary pins is not enough. So I decided to create my own adapter boards.
Hardware
One board uses the Pi form-factor, the second uses the Pi-Zero form-factor:
They fit into standard enclosures, but since the USB-connection is on the side they need an additional cutout. Changing available 3D-models should be a simple task. And the bigger adapter PCB has a footprint for a standard JST-2 battery connector exactly where the USB-power cutout is. Anyhow, this was not the major challenge when designing these boards.
The biggest challenge was the correct pin-mapping. The Pi has I2C, UART, two SPI and I2S. I did not take the last one into account so I ended up with two revisions. I2S needs two consecutive pins. On the Pi, that is GPIO18 and GPIO19, but they are not next to each other on the pin-header.
Another contraint was space. I did not want to route traces below the WLAN-chip and antenna of the Pico-W. In the end I had to make a compromise for the Pi-Zero adapter: the first revision maps both SPIs but not I2S, the second revision maps SPI0 and I2S but not SPI1. Which is not a big deal since I haven't found a HAT yet that actually uses SPI1.
I also don't map the ID-pins of the Pi. These are used to automatically configure the correct driver on the Pi. On the Pico, you don't run a generic OS but a specific program, so you have to take care about correct drivers already before when you put them on the CIRCUITPY-drive.
The Pi-adapter has more space. I added a SD-card reader and I broke out a number of pins. One of the drawbacks of many HATs is that they block the complete pin-header although they only use a few pins. Breaking out the pins is not strictly necessary since you can access all pins from the back anyhow.
Software
The second part of the project was porting the HAT-drivers to the Pico. For Adafruit HATs, that was fairly simple. Adafruit has CircuitPython support for almost everything they sell. And since Blinka brings CircuitPython to the Pi-SBCs, "porting" the drivers is a matter of using the correct pins.
On example: the speaker-bonnet. The learning guide (https://learn.adafruit.com/adafruit-speaker-bonnet-for-raspberry-pi) tells you it is using the I2S pins GPIO18, GPIO19 and GPIO21 on the Pi. After looking up the mapping for the adapters, you just plug in those pins into a small example program provided by a second guide: (https://learn.adafruit.com/mp3-playback-rp2040/pico-i2s-mp3) and off you go playing MP3 on the speaker-bonnet. This is actually much simpler on the Pico compared to the Pi, because you don't have to go through all the steps to install the relevant drivers.
For other HATs, you will usually find CircuitPython example code for the Pi using Blinka in the learning guide for the HAT. In this case, you can take the code as is and only replace the pin-numbers.
I also own a number of HATs from Pimoroni. They don't provide CircuitPython drivers, but at least for some of the HATs there are ready to use drivers for the builtin driver-IC. In only a few cases I had some real porting work to do. But once I found out how to translate CPython I2C/SPI-calls to CircuitPython, the porting was straightforward.
Project-Repository
You can find the project repository here: https://github.com/bablokb/pcb-pico-pi-base. The repo has KiCad design files as well as ready to use production files for my preferred PCB manufacturer.
Also in the repo are CircuitPython libraries and example code for all the HATs I tested or ported.
Next Steps
What I might do in the future is to create a similar adapter PCB for the Feather form-factor. While in my current designs the Pico sits inbetween the PCB and the HAT, with the Feather I would probably make the Feather plug in from behind.
The second thing I am working on is to support the new Waveshare ESP32-S3-Pico. This is an ESP32-S3 in the Pico form-factor with identical physical dimensions and identical pin-layout. This breakout is interesting since it gives me a device with far more memory than the Pico provides. And I don't have to create new adapter boards. First results look promising.
CircuitPython Board Definition Files
Since I have two form-factors and two revisions each with their own pin-mapping, looking up the mapping is cumbersome. So I also created my own CircuitPython versions that do the mapping for me. So
board.GPIO18
will always map to the correct pin on the Pico, regardless which PCB I use.With two form-factors, two revisions and now three devices (Pico, Pico-W, EPS32-S3-Pico) I have a total of 16 combinations, thus potentially 16 CircuitPython versions. A lot to maintain, but not all combinations are actually in use (yet).
-
Automating PIP & CircuitPython-Stubs updates for Windows Users This article is for Circuit Python developers that use PIP and CircuitPython-Stubs in a Windows environment.
Stubs are helpers for code completion hints with IDE's such as PyCharm, VSCode, and others.
Unfortunately PIP & CircuitPython-Stubs do not automatically stay updated. These are things you must manually update when a new version of Circuit Python is released or whenever your heart dictates you want to update it. This is a problem because I never remember to keep them updated and recently found out my version of stubs was last updated in Circuit Python 7.3.3 (we're now at Circuit Python 9.0.1).
This is assuming you already have PIP and CircuitPython stubs installed.
The manual way to update them is:
python -m pip install --upgrade pip
pip install circuitpython-stubs --upgrade
These are the types of things I do not want to be required to remember to update. I consider these things minutia that should automatically stay updated.
Windows Task Scheduler can automate the process of keeping both PIP and circuitpython-stubs up to date every time you log into Windows. First we need to create a batch script and put it in a directory/folder that will always be available to Windows.
I chose to put it in the following folder:
\Downloads\CircuitPython-Stubs_Updater
You can name the script whatever you'd like. You can edit a .bat file as easly as a .txt file, you don't need a special IDE to do it, Notepad works fine for it.
I named my batch file:
circuitpython-stubs.bat
It resides inside of the CircuitPython-Stubs_Updater folder and includes the following code in the .bat file.
-
Building an Anti-Dew Heater Controller Introduction
Astronomy is my primary hobby and taking photographs of night-sky objects is my particular interest. A downside to this hobby is that it is very weather dependent. If it’s cloudy nothing can be seen. Weather reports are important to monitor but they just serve the general area. The sky conditions at my specific location are better monitored with an AllSky Camera.
An AllSky Camera is simply a camera with a fisheye lens that’s pointed up into the sky. A program takes pictures of the sky all night long so checking the sky conditions can be done by looking at the latest sky image. Is it too cloudy to take images? Are clouds starting to move in? Just check the AllSky Camera!
The Issue with Dew
Unfortunately, the dome of the AllSky Camera is prone to have dew forming on it when the humidity gets high. Once that happens, the Allsky images are totally unusable. To combat dew, many AllSky Cameras have a dew heater built into them. The heater in my camera is very simple: Apply 12 VDC and the heater is on. Remove the voltage and the heater is off. This applies about 10 W of power to the heater, and it does get hot enough to keep dew from forming on the dome. Sometimes it gets too hot.
If the humidity is moderate the 10 W of power is way more than needed to keep the dome clear. An unwanted side effect of too much heat is that cameras don’t like it. The hotter a camera gets the noisier, or grainer, its picture becomes. This is especially apparent with long exposures and AllSky Cameras can take up to 60-second exposures under a dark sky! The better solution is to vary the amount of power applied to the heater so that only enough is applied to keep dew from forming, and no more.
-
Using Github Codespaces for CircuitPython Development Using Github Codespaces for CircuitPython Development
Introduction
If you wan't to contribute to CircuitPython, one of the hurdles you need to take is the installation of the development environment.
There is a nice guide from Dan Halbert https://learn.adafruit.com/building-circuitpython which walks you through all the necessary steps.
There are a few problems though:
- you will need to download and install a lot of software-packages. Some of them might even need other versions than those that the packet-manager of your distribution provides. Or they conflict with other projects you are working on.
- If you use a different flavor of Linux, you cannot just copy and paste the commands from the guide but also have to change commands and package-names.
- Your software-environment is bloated. Disks are very large these days, so this is not the main problem, but backups take definitely longer (I assume that you do backup your computer).
You could use a dedicated development machine or a virtual machine, but setting this up is again additional work.
Github Codespaces are a solution for all of these problems. A Codespace is a sort of virtual Linux-system. Technology wise it is a Linux container running within docker in the cloud. If you have a Github account, you can create such a system within seconds. You just head to https://github.com/codespaces and create a codespace from one of the templates (the "Blank" template is just fine).
The interface to the codespace is the web-version of "Visual Studio Code" (VSC), so you have a state-of-the-art editor, terminals, git and so on - all from within your browser. As an alternative, you can install VSC on your local machine, add the codespace-extensions from the VSC-marketplace and connect from your local VSC to you codespace. This is higly recommended, since the browser version is sometimes sluggish.
Since codespaces use ressources in the cloud, Github charges for using them. The good news is that the free plan of every account has 120 CPU-hours and 15GB storage per month included. The minimal machine has 2 CPUs, so this boils down to 60 hours per month. This should be enough unless you are a professional developer.
Automatic Setup for CircuitPython
At this point, you could just create an empty codespace from the template and follow the guide from Dan. I actually recommend that you do that once, since you will learn about the different tools you need to install.
For regular use, it is much simpler to let Github do all this work. For this reason the CircuitPython repository has predefined codespace configurations for most of the ports.
So the normal workflow would look like this:
- create a fork of https://github.com/adafruit/circuitpython
- create a new development branch within your fork
- clone this branch into a codespace
- go for a coffee-break: the initial setup will take about 10 minutes
- edit and build your own version of CircuitPython
- add, commit and push any changes back to your branch
- create a pull-request for upstream
You can find detailed instructions for the third step in the Readme: https://github.com/adafruit/circuitpython/blob/main/.devcontainer/Readme.md
Daily Use
Once you have created your codespace, you can keep it and use it whenever you want. Codespaces have two states: "active", i.e. running or "stopped". In the latter state you are only charged for the storage, so don't forget to stop your codespace after you finished your work. Github will automatically stop your codespace after 30 minutes of inactivity. In your accout settings you can change this value to something shorter. Also, Github will delete unused codespaces after 30 days of inactivity. But you will be prompted before this happens.
Storage size is a minor problem, since Github does not charge for the storage that the standard Linux image uses. A fully operational codespace for the espressif-port e.g. has about 2.4GB, so the 15GB limit will be enough for a number of codespaces.
Further Reading
Codespaces are a powerful tool with many features not covered here. To find out more, read the documentation: https://docs.github.com/en/codespaces.
Final Note
The scripts for the automatic setup of codespaces are not maintained by the core CircuitPython developers. As CircuitPython evolves the buildsystem will change and the scripts might stop working. In this case, it is best to create an issue.